Journals
  Publication Years
  Keywords
Search within results Open Search
Please wait a minute...
For Selected: Toggle Thumbnails
Remote sensing image dehazing method based on cascaded generative adversarial network
SUN Xiao, XU Jindong
Journal of Computer Applications    2021, 41 (8): 2440-2444.   DOI: 10.11772/j.issn.1001-9081.2020101563
Abstract478)      PDF (2363KB)(539)       Save
Dehazing algorithms based on image training pairs are difficult to deal with the problems of insufficient training sample pairs in remote sensing images, and have the model with weak generalization ability, therefore, a remote sensing image dehazing method based on cascaded Generative Adversarial Network (GAN) was proposed. In order to solve the missing of paired remote sensing datasets, U-Net GAN (UGAN) learning haze generation and Pixel Attention GAN (PAGAN) learning dehazing were proposed. In the proposed method, UGAN was used to learn how to add haze to the haze-free remote sensing images with the details of the images retained by using unpaired clear and haze image sets, and then was used to guide the PAGAN to learn how to correctly dehazing such images. To reduce the discrepancy between the synthetic haze remote sensing images and the dehazing remote sensing images, the self-attention mechanism was added to PAGAN. By the generator, the high-resolution detail features were generated by using cues from all feature locations in the low-resolution image. By the discriminator, the detail features in distant parts of the images were checked whether they are consistent with each other. Compared with the dehazing methods such as Feature Fusion Attention Network (FFANet), Gated Context Aggregation Network (GCANet) and Dark Channel Prior (DCP), this cascaded GAN method does not require a large number of paired data to train the network repeatedly. Experimental results show this method can remove haze and thin cloud effectively, and is better than the comparison methods on both visual effect and quantitative indices.
Reference | Related Articles | Metrics
Remote sensing image classification via semi-supervised fuzzy C-means algorithm
FENG Guozheng, XU Jindong, FAN Baode, ZHAO Tianyu, ZHU Meng, SUN Xiao
Journal of Computer Applications    2019, 39 (11): 3227-3232.   DOI: 10.11772/j.issn.1001-9081.2019051043
Abstract400)      PDF (1151KB)(238)       Save
Because of the uncertainty and complexity of remote sensing image data, it is difficult for traditional unsupervised algorithms to create an accurate classification model for them. Pattern recognition methods based on fuzzy set theory can express the fuzziness of data effectively. In these methods, type-2 fuzzy set can better describe inter-class hybrid uncertainty. Furthermore, semi-supervised method can use prior knowledge to deal with the generalization problem of algorithm to data. Therefore, a remote sensing image classification method based on Semi-Supervised Adaptive Interval Type-2 Fuzzy C-Means (SS-AIT2FCM) was proposed. Firstly, by integrating the semi-supervised and evolution theory, a novel fuzzy weight index selection method was proposed to improve the robustness and generalization of the adaptive interval type-2 fuzzy C-means clustering algorithm. The proposed algorithm was more suitable for the classification of remote sensing data with severe spectral aliasing, large coverage areas and abundant features. In addition, by performing soft constrained supervision on small number of labeled samples, the iterative process of the algorithm was optimized and guided, and the greatest expression of the data was obtained. In the experiments, SPOT5 multi-spectral remote sensing image data of the Summer Palace in Beijing and Landsat TM multi-spectral remote sensing image data of the Hengqin Island in Guangdong were used to compare the results of the existing fuzzy classification algorithms and SS-AIT2FCM. The experimental results show that the proposed method obtains more accurate classification and clearer boundaries of classes, and has good data generalization ability.
Reference | Related Articles | Metrics